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Abstract

Much of the critical infrastructure of the world is controlled by programmable logic

controllers (PLC). These PLCs regulate the processes of these industries, and there-

fore are targets for malicious actors around the globe. Honeypots are one of various

security mechanisms that can be deployed to help protect these vital systems. In

order to work, a honeypot must accurately mimic the system under protection. How-

ever, within the PLC market there are numerous manufacturers and protocols which

makes mimicking PLCs using one monolithic software package a daunting task. To

mitigate this shortfall, ScriptGenE, a protocol-agnostic framework capable of accu-

rately creating PLC honeypots, is designed.

ScriptGenE uses previously captured PLC traffic to create a tree of the protocol

and selectively respond to application layer requests in an accurate way. This research

integrates ScriptGenE with Honeyd to provide the PLC honeypots with an accurate

network layer. This combination provides a comprehensive PLC honeypot.

Testing is done by using the combined framework to emulate a network of Allen-

Bradley ControlLogix, Allen-Bradley CompactLogix, and Siemens S7-300 PLCs. A

series of tools are used to evaluate the legitimacy of the emulated PLC network

including Nmap, Honeyscore, RSLinx, STEP7, and Wget. Nmap and Honeyscore are

used to show that the combined framework is able to accurately emulate the network

layer of three different PLC types with 100 percent accuracy. Using Wget, RSLinx,

and STEP7, this research shows the ability to emulate more advanced application

layer protocols such as ENIP, ISOTASP, and HTTP with accuracies of 78, 100, and

67 percent respectively. This completed framework provides a viable solution to help

protect critical infrastructure around the world.

iv



AFIT-ENG-MS-17-M-029

To my family, for their boundless support.

v



Acknowledgements

I would like to thank Phillip Warner and Kyle Girtz for their previous work on

this project that laid the foundation for my efforts. I would also thank Dr. Mullins

for simultaneously providing me support and autonomy. Lastly, I would like to thank

the other members in my committee, LTC Mason Rice and Mr. Juan Lopez, for

sharing their expertise and time.

Justin K. Gallenstein, 2d Lt, USAF

vi



Table of Contents

Page

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Goals and Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 ScriptGenE Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Honeyd Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Assumptions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.1 Network Protocols Involved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.2 Limited Set of Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5.3 Limited Set of Scanning Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.4 Limited Configuration Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5.5 Resource Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Thesis Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

II. Background and Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Industrial Control Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 ICS Vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Honeypots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Evaluation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Related Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Honeyd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Automatic Protocol Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Advanced Replay Honeypots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.3.4 ICS Honeypots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

vii



Page

2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

III. Framework Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Motivation and Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 The ScriptGenE Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 ScriptGenE.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3 ScriptGenEemulate.py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 ScriptGenE Framework Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 UDP Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 Improved Backtracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.3 Automatic Creation of Honeyd Profile . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.4 ScriptGenEemulate.py Alterations . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4.5 Honeyd Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Design Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

IV. Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 System Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Parameters and Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Workload Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.2 Machine Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6.3 Experimental Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.4 GUI Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7 Methodology Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

V. Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Metric 1 - Nmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Metric 2 - Honeyscore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Metric 3 - PLC Module Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 RSLinx Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.4.2 STEP7 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.5 Metric 4 - Best-Fit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

viii



Page

VI. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Research Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.2.1 Integrated Emulation Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2.2 Best-Fit Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Significance of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.1 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.2 Enhancing ScriptGenEemulate.py Algorithms . . . . . . . . . . . . . . . . 80
6.4.3 Honeyd Connection Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.4 Manual P-tree Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

ix



List of Figures

Figure Page

1 Non-Integrated Nmap Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 ICS Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 General SCADA Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 NIST Recommended ICS Network Configuration . . . . . . . . . . . . . . . . . . . . 13

5 Internet Protocol Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Nmap Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Allen-Bradley Nmap Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Honeyscore Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Honeyd Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

10 Honeyd Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

11 Example Honeyd+ Production Configuration . . . . . . . . . . . . . . . . . . . . . . . 27

12 ScriptGenE Framework Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

13 Protocol Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

14 Example Segment of ENIP Protocol Tree . . . . . . . . . . . . . . . . . . . . . . . . . . 33

15 Example Segment of HTTP Protocol Tree . . . . . . . . . . . . . . . . . . . . . . . . . 34

16 ScriptGenEemulate.py Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

17 Heatmap Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

18 Matching Algorithm Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

19 Removed ScriptGenEemulate.py Socket Options . . . . . . . . . . . . . . . . . . . . 42

20 Non-Protocol Agnostic Code Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

21 Fixed Honeyd Code Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

22 Zero Window Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

x



Figure Page

23 Training Prison Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

24 Training Prison Network HMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

25 Honeyd Configuration File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

26 ScriptGenE Emulator Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

27 Nmap NSE enip-info Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

28 Nmap NSE s7-info Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

29 Possible Honeyscore Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

30 Successful and Failed Module Hierarchy Browsing in
RSLinx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

31 Successful and Failed Module Hierarchy Browsing in
STEP7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

32 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

33 Altered Honeyscore Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

34 Sikulix Code Snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

35 Basic Nmap Scan Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

36 Nmap NSE Script Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

37 Honeyscore Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

38 Module Display Task Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

39 Attribute All Request Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

40 Send RR Data Request Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

41 Series of Resets by Legitimate PLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

42 RSLinx Module Display Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

43 Web Server Result Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

44 Honeyd Data Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

45 Protocol Tree Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



List of Tables

Table Page

1 System Under Test VM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 RSLogix Windows XP VM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 STEP7 Windows XP VM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Tool Hosting Linux VM Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Nmap Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 NSE enip-info Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

7 NSE s7-info Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 RSLinx Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 STEP7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

10 Wget Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xii



List of Acronyms

AFIT Air Force Institute of Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

ARP Address Resolution Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

CUT Component Under Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

DCS Distributed Control System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ENIP EtherNet Industrial Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7

FTP File Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

HI High-Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

HMI Human-Machine Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

HTML Hypertext Markup Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

HTTP Hypertext Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

ICS Industrial Control Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

ICMP Internet Control Message Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

IDS Intrusion Detection System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

IP Internet Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

ISO-TSAP ISO Transport Service Access Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

IT Information Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

LI Low-Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

MAC Media Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

NAT Network Address Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

NIST National Institute of Standards and Technology . . . . . . . . . . . . . . . . . . 10

Nmap Network Mapper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

xiii



NSE Nmap Scripting Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

OS Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

PCAP Packet Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

PI Protocol Informatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

PLC Programmable Logic Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

QEMU Quick Emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

SCADA Supervisory Control and Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 10

SMTP Simple Mail Transfer Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

SNMP Simple Network Management Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

SUT System Under Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

TCP Transmission Control Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

UDP User Datagram Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

VM Virtual Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

xiv



INTEGRATION OF THE NETWORK AND APPLICATION LAYERS OF

AUTOMATICALLY-CONFIGURED PROGRAMMABLE LOGIC CONTROLLER

HONEYPOTS

I. Introduction

1.1 Background

Today’s modern society relies on the reliable production and transportation of

energy, consumer products, water, and communication. These critical industries de-

pend on Industrial Control Systems (ICS) to automatically regulate the required

production processes. At inception, these ICS were designed with availability as the

primary driver without much concern for security [1]. However, as these ICS were

integrated into traditional IT networks, security became a major concern. The ICS

device most important to the security of an ICS network is the Programmable Logic

Controller (PLC). PLCs are responsible for information collection and response actu-

ation. Stuxnet, malware targeting PLCs, demonstrated that substantial destruction

could result from PLC compromise [2, 3]. These ICS networks also operate in an

environment where traditional security techniques such as updating and patching are

not practical as they potentially could interfere with availability.

One technology that has been explored to mitigate this security pitfall is hon-

eypots. Honeypots are systems designed to mimic real systems in an effort to lure

attackers away from production systems [4]. Honeypots exist in many different vari-

ations but can most simply be divided into two categories, High-Interaction (HI) and

Low-Interaction (LI) [5]. HI honeypots closely emulate the full capabilities of the
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target device, while LI honeypots only emulate specific services. Depending on the

category, each of these systems provides different benefits and pitfalls. Regardless,

the quality of a honeypot is determined by its authenticity and flexibility [6, 7].

1.2 Motivation

A myriad of problems are encountered when applying honeypot technology to

ICS networks. Paramount among these is PLCs are expensive which often prevents

utilizing a true PLC as a HI honeypot device. Instead, LI techniques often must be

utilized to select a subset of services to imitate. Honeyd is a framework that can

be utilized for this purpose. Honeyd automatically emulates the network layer of

the traditional OSI stack and provides application layer emulation through optional

custom extensions [8]. Unfortunately the burden of creating these extensions falls

directly on the administrator. This becomes even more difficult when considering

that most ICS devices utilize proprietary protocols.

It has been shown that automated protocol reverse-engineering can assist in em-

ulating unknown protocols [9]. This idea was utilized in the ScriptGen framework

that automatically created Honeyd configurations [10]. The Air Force Institute of

Technology (AFIT) project ScriptGenE further extended this idea by emulating the

application protocols of PLCs by replaying previous Transmission Control Proto-

col (TCP) conversations [11].

Another technique involves proxying traffic from multiple emulated hosts to one

real device. These hybrid honeypots combine the previous HI/LI techniques to pro-

vide the end user with the benefits of both, while minimizing the pitfalls. One example

of this is Honeyd+ which utilizes Honeyd for network layer traffic, while sending ap-

plication layer traffic to a real PLC [12]. This system relies on a series of search and

replace functions to exchange environmental variables (e.g., MAC and IP address)
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to match the desired honeypot. This technique provides a larger target surface for

a smaller investment in hardware, as one legitimate PLC can be used as the back-

end server to multiple emulated PLCs. Unfortunately Honeyd+ can overload the

hardware with proxied traffic, and this technique still requires the expensive PLC

back-end.

Advanced examples of hybrid honeypots include SGNET and GQ, which are com-

plex honeypot systems, designed to lure attackers into executing malware [13, 14].

These projects are not open source, so this research is unable to assess their applica-

bility to this research’s goals.

These examples demonstrate that there is a need for an open source hybrid hon-

eypot. This research further develops ScriptGenE to improve suitability as an ICS

honeypot framework.

1.3 Research Goals and Hypothesis

This research aims to achieve the following goals:

1. Enhance ScriptGenE capabilities to allow for accurate best-fit responses when

exact matches are not available.

2. Integrate ScriptGenE with Honeyd to enable emulation of the industrial network

of a simulated prison.

Currently ScriptGenE only emulates the application layer, severely limiting the

authenticity of the framework [8, 11]. By integrating ScriptGenE with Honeyd, each

honeypot is assigned its own accurate network personality. Furthermore, the back-

tracking algorithm is updated to provide a best-match functionality to replace the

previously utilized default error message. The hypothesis is that with these modifi-
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cations the framework is able to successfully emulate an industrial network of various

PLC types.

1.4 Approach

Based on the above goals, this research is divided into two main threads: Script-

GenE framework enhancements and Honeyd integration.

1.4.1 ScriptGenE Enhancements.

The ScriptGenE framework is an iterative product of various researchers, each

targeting different areas of improvement. This research focuses on three main im-

provements.

1.4.1.1 Protocol-Agnostic Adaptability.

This framework is intended to operate without information on the specific protocol

being emulated. However, prior to enhancements the framework contained various

code sections that required hard-coded information for correct protocol emulation.

For example to emulate the ENIP protocol, one section required changing a variable

from -1 to 1. This signaled to ScriptGenE to execute a certain logic path. These are

removed in favor of protocol-agnostic solutions.

1.4.1.2 UDP Protocol Support.

ScriptGenE previously only supported TCP traffic emulation. This presented

a pitfall in PLC emulation because the User Datagram Protocol (UDP) protocol is

utilized for many higher-level ICS protocols. This research adds functionality to allow

for the emulation of UDP protocols.
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1.4.1.3 Improved Unknown Emulation.

ScriptGenE operates by matching requests from the client to messages it has stored

in its protocol tree (p-tree). Previous iterations of the framework only concerned

themselves with exact matches. If an exact match was not found, the honeypot

returned an error to the client. This research expands this functionality by creating

a matching algorithm to return the best match.

1.4.2 Honeyd Integration.

ScriptGenE was designed to be eventually integrated into a honeynet framework.

Previously the framework only emulated at the application layer. Thus, any net-

work layer scans would return the results of the host machine. For instance, this

research utilized a Linux-based Virtual Machine (VM) for hosting the framework.

Any Network Mapper (Nmap) scan on the IP address of the honeypot would return

results similar to those shown in Figure 1. As can be seen, an attacker could clearly

ascertain, from both the Media Access Control (MAC) address and Operating Sys-

tem (OS), that this is not a legitimate PLC but in fact a VM-based Linux machine.

With this new integration the scan should return results consistent with the desired

PLC. Also, Honeyd allows for simulating a variety of PLCs within a single VM, thus

increasing its security footprint, as only one host is needed to simulate an entire

network.

1.4.3 Experimentation.

Experimentation is divided into two main categories, protocol emulation and Hon-

eyd integration. To evaluate these two categories, four experiments are carried out

using a network of three legitimate PLCs —an Allen Bradley ControlLogix, Allen
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Figure 1. Nmap scan of non-integrated ScriptGen

Bradley CompactLogix, and a Siemens S7-300 with discrete and analog input/output

modules.

1. The first focuses on using Nmap to evaluate the authenticity of the Honeyd

personality. This test involves scanning the legitimate PLCs to generate a emulation

target. Then three Honeyd honeypots to emulate these PLCs are created and sub-

sequently scanned. Using the respective pairs of scans, the similarity between the

legitimate and Honeyd instances is determined.

2. To further evaluate the Honeyd integration, these previously created honey-

pots are subjected to Shodan’s Honeyscore in the second experiment. This tool was

developed to look for common honeypot characteristics and assign a score from 0-1

based on the likelihood of the target being a honeypot.

3. The next experiment is to ensure that integration with Honeyd does not in-

terfere with application protocol emulation. The created honeypots are scanned with

their respective industry standard tool, RSLinx or STEP7, and evaluated to deter-

mine if they display modules correctly.

4. The last experiment focuses on the accuracy of the improved backtracking

algorithm. The improvement is determined by comparing the current research with

the previous ScriptGenE incarnation. These tests are carried out by utilizing Wget

to query each honeypot with GET requests, each containing a different User-Agent.
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Based on the responses, the ability of the new framework to generate a best-match is

evaluated.

1.5 Assumptions and Limitations

This research attempts to minimize the assumptions and limitations that apply.

However, due to the scope of this field of research, various assumptions and limitations

are required.

1.5.1 Network Protocols Involved.

Only the protocols relevant to the designed experiments are utilized in this re-

search including the Hypertext Transfer Protocol (HTTP), ISO Transport Service

Access Point (ISO-TSAP), and EtherNet Industrial Protocol (ENIP). The design of

ScriptGenE ideally renders the protocol irrelevant to emulation as it performs its ac-

tions without regard to the specifics of the protocol. However, protocol replay failures

are possible due to improper protocol interpretation.

1.5.2 Limited Set of Tasks.

PLCs are complex systems with many different functional roles. The emulated

PLCs are subjected to various tests to simulate an adversary’s early reconnaissance

actions. These tests are used to evaluate the honeypot’s ability to imitate a legitimate

PLC. Despite attempts to diversify, these tests are just a subset of a variety of tasks

that could have been chosen.
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1.5.3 Limited Set of Scanning Tools.

This research utilizes a set of scanning tools (i.e., Nmap and Honeyscore) to

evaluate the emulated PLC’s network layer. This set of tools is a selection of popular

options. There is no guarantee that the emulated PLC would respond appropriately

to other tools.

1.5.4 Limited Configuration Setup.

The chosen PLCs are manufactured by Siemens and Allen-Bradley. Despite being

two of the most widely deployed brands, these are only two vendors from variety of

other PLC manufacturers [15].

1.5.5 Resource Management.

These experiments are carried out with the assumption of one client interacting

at a time. These frameworks are both designed to incorporate threading and resource

management to allow for multiple interacting clients. Pilot testing also showed no re-

sulting degradation despite an increase in clients. However, without further analysis,

this research’s chosen experiments cannot guarantee this result.

1.6 Thesis Overview

Chapter II contains an overview of ICS technology and related work on honeypots

and their applications. Chapter III provides a description of the developed emulator

configuration. Chapter IV details the experimental design with results in Chapter V.

Chapter VI presents research conclusions and suggestions for future work.
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II. Background and Related Research

2.1 Overview

This chapter outlines the security concerns related to ICS equipment responsi-

ble for controlling critical infrastructure. These systems have adopted traditional

Information Technology (IT) to increase efficiency and interconnectivity. The adop-

tion of this technology, without proper implementation, leads to vulnerabilities in

these critical systems. Honeypots have been used to counter this threat, and there

are many different configurations that each provide via a varied set of customizable

specifications. This customization is often time consuming but necessary to provide a

credible honeypot. This has created an area of research in automatically configuring

these honeypots regardless of the required protocol.

2.2 Background

2.2.1 Industrial Control Systems.

The United States defines critical infrastructure as systems and assets, whether

physical or virtual, so vital to the United States that the incapacity or destruction of

such systems and assets would have a debilitating impact on security, national eco-

nomic security, national public health or safety, or any combination of those matters

[16]. These systems are further broken down by Presidential Policy Directive PPD-

21, which defines 16 different critical infrastructure sectors including energy, water

and wastewater, chemical, transportation, and food and agriculture [17]. These sec-

tors have slowly adopted industrial control technology in order to achieve increased

automation, efficiency, and maintainability [1].

There are many distinctions within the critical infrastructure sectors between the

different computational devices used to control their equipment. These distinctions
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are dictated by the requirements of their systems. In this thesis the term ICS, as de-

fined by National Institute of Standards and Technology (NIST), is used to refer to all

of these distinctions including Supervisory Control and Data Acquisition (SCADA),

Distributed Control System (DCS), and PLC.

Initially these ICS systems were vendor specific resulting in many different pro-

tocols. However in order to realize further benefits (e.g., interconnectivity and cost

reduction), these industries are moving towards lower cost IT solutions, relying on

widely deployed solutions such as TCP/Internet Protocol (IP). Despite some positive

implications, the transformation has brought about new vulnerabilities, including tar-

geted attacks by malicious actors. Previously these systems existed isolated from the

external networks using unconnected proprietary technology. However as a byproduct

of IP, if they are incorrectly configured, these systems can be accessed remotely by

malicious actors around the globe. Since these ICS devices are responsible for control-

ling much of the critical infrastructure of the US, these vulnerabilities, if exploited,

could have serious repercussions.

As shown in Figure 2, ICS systems are composed of three main components:

Human-Machine Interface (HMI), control loop, and remote diagnostics. The HMI

is typically a console where the human can monitor and interact with the system

components, in order to ensure correct operation. Within the control loop the con-

troller continuously polls the sensors for data. This data is used by the controller to

actuate the components of the process to achieve the desired outputs. This could be

as simple as a controller monitoring a temperature gauge and activating a fan when

within certain temperature parameters.

In a typical environment the diagram is actually more complex, as the ICS con-

trol loop is often located at remote sites as shown in Figure 3. This is because when

looking at critical infrastructure, the measurements must be taken at various geo-
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Figure 2. ICS block diagram [1]

graphic locations. Instead of having an individual HMI at each of these control loop

locations, it is more efficient to have the data transmitted via Wide Area Networks

(WAN) to a centralized HMI. This transmission over WAN takes place using various

communication technologies. The use of these technologies can leave both the control

center and remote sites vulnerable if not correctly implemented.

The picture gets even more complex when considering that these SCADA envi-

ronments are often part of a much larger organizational structure. As Figure 4 shows,

this structure often includes the corporate network, which for business purposes is

exposed to the external Internet. This exposure means that potentially malicious ac-

tors could gain access to the sensitive control network. It is for this reason that NIST

recommends using properly configured firewalls to divide the network appropriately.
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Figure 3. General SCADA layout [1]

2.2.2 ICS Vulnerabilities.

Finding these incorrectly-configured ICS devices has become even easier with the

creation of Shodan, a search engine for embedded devices [18]. This engine can

be used to enumerate a wide host of embedded devices including webcams, baby

monitors, and most relevantly ICS equipment. Using this tool, adversaries can locate

incorrectly-configured ICS equipment. Researchers have demonstrated this by using

Shodan to create visualizations of over one million ICS devices [19, 20]. After finding

these Internet-facing ICS devices, it has been shown that the function and sector of

industry can be deduced which means attackers can target specific equipment based

on motivation.[21]

A researcher at Trend Micro investigated the threat that Shodan poised to ICS

devices by performing two studies. In these studies, Kyle Willhoit set up a combina-

tion of honeypots and actual hardware with insecure configurations. By monitoring

these devices Willhoit determined there were 12 and 74 targeted attacks between the

experiments, running one month and four months respectively [22, 23]. However, this
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Figure 4. ICS network configuration recommended by NIST [1]
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data was later contradicted by a experiment done by Bodenheim, in which four differ-

ent Internet-facing PLCs, with varying exposure levels, were monitored for attacks.

After 55 days of monitoring there were no targeted attacks which led Bodenheim to

conclude that Shodan did not significantly affect PLC security [24]. This brings into

question whether the attacks observed by Willhoit were targeted at the PLCs or just

at the HMIs [21].

Regardless of Shodan’s affect on targetability, there is no denying that these ICS

attacks can have serious repercussions. The most well-known example of this is the

2010 Stuxnet worm, which exploited PLCs as part of an apparent attack on Iran’s

nuclear facilities. This worm caused physical damage to centrifuge devices within

the facilities [2]. This attack was not a singularity, ICS threat modeling studies have

shown that Denial of Service (DoS) and integrity attacks against chemical production

PLCs can cause disruption or even explosions [3].

Attacks do not have to use malicious logic to cause damage. Project Basecamp, an

experiment by Digital Bond, showed that an attacker could DoS, leak information, and

modify the firmware of an Allen-Bradley PLC by simply using commands designed

to improve ease of use [25].

From an outside perspective it would seem that traditional IT security principles

could be applied to protect ICS devices. While some of these principles certainly

could be applied, there are a few key differences between ICS and traditional IT

systems that require consideration.

The first of these differences is apparent in the security goals of ICS systems.

With traditional IT the importance of the elements in the CIA triad of confidentiality,

integrity, availability follow directly in that order. ICS systems on the other hand

value availability and integrity significantly higher than confidentiality [1]. The result

is that ICS systems cannot simply be taken off-line to be patched and updated.
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Likewise, often the industry resists updating software, because any minor change on

these aging systems could cause an outage.

Aging systems are another issue in regards to ICS equipment. The typical life-

cycle of an IT system is 5 years, while ICS systems often reach ages close to 20 years

[1]. Due to this, ICS equipment does not have the same technological capabilities.

Security techniques like encryption, which can be trivial on an IT network, can bring

an ICS system to a halt. In fact typical ping sweeps, used by penetration testers, were

shown to be responsible for the destruction of $50K worth of electronic equipment

[26].

2.2.3 Protocol Stack.

To understand the variety of honeypot solutions available it is necessary to un-

derstand the underlying Internet protocol stack as shown in Figure 5. This stack

explicitly outlines the different segments required to transmit information across tra-

ditional IT networks. Each segment is responsible for a different part of the trans-

mission process.

The application layer is the most abstract of the segments. This segment is re-

sponsible for the application-specific communication being transmitted. The most

common example is HTTP, which is responsible for delivering websites to computers.

HTTP, as outlined in RFC 2616, has a series of defined messages [27]. These messages

include the most commonly used GET request, which is used to retrieve information

from websites. Both entities interested in communicating over HTTP must use these

specifically-defined messages.

The transport layer is the next layer in the protocol stack. The best known

transport protocol is TCP which is used for connection-oriented transmissions, where

reliable delivery is required. This is because TCP includes acknowledgment/synchro-
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Figure 5. Internet Protocol stack

nization techniques to alert the receiver that the information was received, and verify

the correct order. For simpler messages that can be simply retransmitted if lost, UDP

is often used due to its lower overhead.

This is all built upon the network layer which provides routing and logical ad-

dressing for messages it encapsulates into datagrams. The IP, as defined in RFC 791,

is the most commonly utilized network layer [28]. This protocol contains a header

that is comprised of data including the source and destination IP address. Using this

information, connected hosts and routers can route traffic to its correct destination.

When emulating a device, all messages must follow these outlined specifications; if

they deviate even slightly, communication will fail. This requirement makes creating

honeypots to emulate these protocols extremely difficult. For this reason there are

different honeypot solutions that emulate various layers of the protocol stack.

2.2.4 Honeypots.

Honeypots are extraneous systems designed to lure attackers into targeting them

to provide an advantage to the network owner. These honeypots have an advantage

over traditional intrusion detection systems (IDS) because no legitimate traffic should
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be routed to them. This reduces false positives as any connection to the honeypot

should be investigated. These systems, if implemented properly, should have no affect

on production environment. The data recovered from these attempted intrusions can

then be examined to best determine how to bolster defenses [4]. One example of the

power of information gathered from honeypots can be seen in the “Kyoto 2006+” data

set, which was intended to reveal the state of malware on the Internet. Researchers

spent three years gathering Internet traffic and discovered that nearly half of all

collected connections were attacks [7]. Even more serious is that about one percent of

these attacks (425,719) contained unknown signatures that did not trigger the IDS.

Different categories of honeypots exist. These can be generally categorized into

two overarching categories, HI and LI, based on three main of factors: fidelity, perfor-

mance, and security [4]. Fidelity refers to the level of realism achieved, performance

is the ability to handle sufficient amounts of traffic, and security concerns the threat

posed to the integrated environment. All three of these factors vary in importance

depending on the deployed environment thus require different solutions.

HI honeypots are typically resource-intensive honeypots that can range from full

production systems to virtual emulated machines (e.g., VMware and Quick Emulator

(QEMU)) [4]. These honeypots often contain the full range of capabilities of their

intended emulation target, which means that they can often correctly implement the

application layer of communication protocols, making it difficult for an adversary to

realize that they are interacting with a honeypot. High interaction honeypots can

pose an increased security risk to the integrated environment, because if compromised

they can be used to pivot to production hardware.

LI honeypots on the other hand are lightweight programs that can be run on

low-powered systems, such as the Raspberry Pi [4, 12]. These systems often only

implement a small subset of the capabilities of their intended targets. Examples of LI
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honeypots are the Deception Toolkit, LaBrea, Tiny Honeypot, GHH, and Php.Hop

[29, 30, 31, 32, 33]. These systems all have different goals including malware capture,

tarpitting (slow down), and adversary detection [4]. Regardless of their intended goal,

the majority of LI honeypots implement only fully up to the transport layer, with

secondary functions implementing various subparts of application layer logic. Hence,

it is often easier for an adversary to ascertain when they are interacting with one of

these systems.

2.2.5 Evaluation Tools.

When evaluating the viability of a Honeypot a variety of tools can be used. The

tools that are most relevant to this research are Nmap, Honeyscore, Wget, and each

manufacturer’s PLC software.

2.2.5.1 Network Mapper.

Nmap is the de-facto standard for network discovery [34]. This tool sends the

target various network packets to determine characteristics. Some of these packets

are simple synchronize (SYN) requests to determine if a port is open/closed. Oth-

ers such as those used for OS fingerprinting are a specifically-formatted sequence of

packets. The response to these sequences is analyzed by Nmap and compared against

a database of OS fingerprints, as shown in Figure 6. Each line of this fingerprint

contains information on how the target responds to each type of request. Honeyd

exploits this database to create personalities, since it now knows how to correctly

respond in a way to trick Nmap into identifying the honeypots as their emulation

target. As shown in Figure 7 the compilation of these scan results includes details

such as open/closed ports, underlying OS, and device type.
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Figure 6. Nmap database example

Figure 7. Scan of Allen-Bradley ControlLogix L55
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2.2.5.2 Honeyscore.

Honeyscore is a tool, created by Shodan’s John Matherly, that can be used to

deduce whether a system is real or a honeypot [35]. The tool is used by simply

entering the IP address of the target into the text-box and clicking check for honeypot.

The exact method of detection is not revealed as this would reduce the efficacy of

the tool. The tool, as shown in Figure 8, claims to have extracted characteristics of

known honeypots, and performs analysis on the supplied IP address to determine if

the target exhibits any of these behaviors.

Figure 8. Honeyscore Interface

2.2.5.3 Wget.

Wget, created in 1996, is a command-line program that retrieves content from

web servers. It is part of the GNU project and supports the downloading over HTTP,

HTTPS, and FTP protocols [36]. It is widely used among Unix users and is distributed

with most Linux distributions. Designed for robustness and portability, the tool has

the ability to recursively download linked resources, which is critical for dynamic web

pages such as those on this research’s PLC.

2.2.5.4 RSLinx and STEP7.

RSLinx and STEP7 are tools, specific to the brand of PLC, that are responsible

for displaying the PLCs information and applicable modules [37, 38]. Each tool uses a
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different protocol (e.g., ENIP or ISO-TSAP) for communicating with the target PLC.

These tools are utilized to connect to the PLCs and download/upload code needed

for operation.

2.3 Related Research

2.3.1 Honeyd.

Of all of the LI honeypot options, Honeyd is the most popular [8]. Honeyd it-

self is actually a framework for deploying a collection of honeypots. When creating

a honeypot the configuration file must specify the emulation personality, the port

specifications of the device, and various other options as shown in Figure 9. The

emulation personality (e.g., Manual 1756) is chosen from a list included with the

Honeyd installation. This personality tells the honeypot how to respond to trick the

specially-formatted requests of Nmap. The port specifications (e.g., filtered or closed)

define what action to take on all ports that are not otherwise specified. The other

options include what subsystems to run, and the network and link-layer addresses for

the honeypot. From this information Honeyd creates a series of honeypots that can

be used to fill in the unused IP space on a network.

Figure 9. Honeyd Configuration [1]
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After configuration, Honeyd functions by designating the host computer to re-

spond to Address Resolution Protocol (ARP) requests destined for the various Honeyd

instance MAC addresses. As shown in Figure 10, once the traffic reaches the host ma-

chine it is routed to the packet dispatcher which performs a lookup to determine the

matching Honeyd honeypot. Using this configuration file, Honeyd determines how to

respond to Internet Control Message Protocol (ICMP), TCP, or UDP requests (e.g.,

RESET, SYN or IGNORE). Furthermore it determines if the target ports have any

service scripts running, and if so transfers the data.

Figure 10. Honeyd Architecture [1]

The real power of Honeyd is the ability to create scripts to emulate services on

individual ports, such as File Transfer Protocol (FTP) and Simple Mail Transfer Pro-

tocol (SMTP). This allows Honeyd to bridge the application layer with the transport

layer, and makes it a significantly more credible honeypot. Honeyd utilizes two main
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types of scripts: regular and subsystem. Regular scripts are created and initialized for

every separate connection to the honeypot. These are often reserved for lightweight

scripts that do not require complex computation. A subsystem script is shared by all

connections and only initialized during honeypot boot. This reduced overhead allows

for more complex computation.

One of the biggest drawbacks to Honeyd is the need to create and maintain in-

dividual scripts for each application layer protocol. This process is extremely time

consuming and can significantly increase the cost to benefit ratio of using Honeyd to

an unfavorable level.

2.3.2 Automatic Protocol Emulation.

To mitigate this major drawback of Honeyd, there have been various projects to

automate the process of creating application-level emulators. Each of these projects

achieve a high level of fidelity without relying on extensive configuration. These

projects emulate the well-known protocols by observing port numbers and protocol

traffic to chose from pre-configured scripts.

A “catering” honeypot created by Xiang and Ju called BAIT-TRAP is the first

of these projects [39]. It observes traffic on the network and then can dynamically

choose from a variety of honeypot scripts to create a relevant system from various

physical or virtual honeypot shells. These shells are basic outlines of different systems

(e.g., Linux and Windows) without specific running scripts. An example of this in

action is initializing a honeypot running an HTTP daemon after seeing TCP SYN

attempts to port 80. In this example, the shell could be Windows or Linux since

both are legitimately capable of running web servers. The issue with the design is

that the scripts must be created and stored in a database in order to be selected.
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Although this project may simplify configuration of a series of honeypot instances, it

does nothing to reduce the complexity of creating protocol-dependent scripts.

Chowdhory et al. extended this idea by using a modified version of data mining

they call service mining [40]. Their system used an initial database of arguments and

keywords to break down network traffic into related sets of keywords. Using these

keywords they were able to successfully emulate the FTP protocol.

Similar work was done in automatically emulating the web interface of PLC’s,

using TCP and HTTP. Fink used Wget and tcpdump to extract information, and

then reconstructed the TCP data. Using this extracted information Fink was able to

mimic the web interface of an arbitrary PLC [41].

2.3.3 Advanced Honeypots With Replay.

To create truly flexible honeypots capable of emulating application-layer traffic,

applicable protocols must be completely reverse engineered. After the protocol is

understood it can then be replayed to accurately simulate an ICS device.

2.3.3.1 Protocol-Agnostic Replay.

RolePlayer is a tool designed to listen to communication between two devices, and

then using a series of algorithms; it is able replay this communication to emulate a

participant in the conversation [42]. It is also able to act as a proxy to the real device,

so that if it encounters an unknown message it can query the real device to decide

how to respond. This tool can run as a proxy to a Honeyd instance but both tools

must be running simultaneously.

ScriptGen is a framework that goes one step further by creating Honeyd scripts

based on captured traffic [10]. After creation, these scripts can be simply included in

the Honeyd configuration. ScriptGen works by using a series of algorithms to create
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a state machine. Using this state machine, the created scripts can emulate a device

by matching traffic to its state machine, and iterating over the sequential nodes. An

updated version of ScriptGen adds the proxy capability of Roleplayer, and the ability

to detect protocol dependencies [43].

ScriptGenE extends the functionality of ScriptGen by implenting ICS-specific fea-

tures, such as default error messages and unknown transition handling [11]. This

framework was designed by Warner to be protocol agnostic to better emulate PLC’s

which often use proprietary protocols. This framework creates protocol trees which

then need to be integrated into Honeyd scripts or subsystems.

2.3.3.2 Protocol Agnostic Honeypots.

GQ is a malware execution “farm” that utilizes Roleplayer as a LI honeypot front

end. It was initially designed for tracking worm propagation [13, 44]. GQ uses a

centralized gateway to create various infected VMs and then tracks these systems

using a VM monitor. This monitor makes containment decisions to help control and

regulate the spread of malware within the “farm”.

SGNET is similar to GQ in that it was designed to study malware, except it focuses

on “code injection attacks”. SGNET utilizes a distributed architecture and relies on

ScriptGen for its LI front end, and QEMU emulators for the HI back end [14]. This

combination allows the framework to evaluate all parts of a code injection attack (i.e.,

exploit, control hijack and payload execution). An improvement to this framework

called Mozzie enhances the project by using ScriptGen on both ends of malware traffic

[45]. This improvement allows ScriptGen to generate both sides of traffic (i.e., client

and malware) allowing traffic to be studied without having to communicate out to

the external web.
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AWESOME, or Automated Web Emulation for Secure Operation of a Malware-

Analysis Environment, combines may of the above techniques into one framework.

It uses Honeyd and Argos, a QEMU based network traffic monitor, for its LI and

HI honeypots respectively and employs ScriptGen for communication replay. The

purpose of this system is to capture and analyze malware. [46]

2.3.4 ICS Honeypots.

Honeypot solutions are traditionally used to emulate traditional IT infrastructure;

applying this technology to ICS networks can be difficult. However, due to the growing

concern for the security of ICS equipment, there have been a few attempts to create

solutions designed for the ICS environment. These solutions, while effective, are often

specific to certain protocols and difficult to correctly implement.

The first of these solutions is the open source honeypot Conpot created by the

Honeynet Project [47]. This LI honeypot implements the Modbus and Simple Net-

work Management Protocol (SNMP) protocols. The default configuration simulates

a basic Siemens S7-200 PLC with a CPP431 module. It was designed to be easily

customizable, meaning that if the same protocols were used it could be configured to

resemble another PLC type. However it still requires significant effort to accurately

mimic another set of protocols.

Another ICS honeypot solution is an AFIT project called Honeyd+ [12]. It is

an extension of Honeyd designed to be deployed on a Raspberry Pi . As shown in

Figure 11 the project is intended to allow multiple geographically-separate instances

of Honeyd+ to proxy to a single PLC. Also, the project focused on improving Honeyd

by removing MAC and IP discrepancies in the PLC web interfaces by implementing

a search and replace function. This prevents the attacker from ascertaining he is

interacting with a honeypot.
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Figure 11. Example Honeyd+ Production Configuration [12]

27



Digital Bond created SCADA Honeynet, a freely-available ICS honeypot solution

that consists of two VMs. One VM acts an Intrusion Detection System (IDS) to

monitor the other VM which emulates a PLC running Modbus, Telnet, SNMP, and

HTTP protocols. The IDS uses Digital Bond’s specialized Quickdraw IDS signatures

to detect malicious attacks against the second VM. The user has the option to replace

the simulated PLC with an actual PLC to retain the monitoring capabilities while

improving authenticity [48].

CryPLH is a stripped down Ubuntu VM intended to emulate a PLC [49]. This

honeypot uses built in iptables to create the appearance of being a Siemens Simatic

300. A series of scripts then emulate the HTTP, SNMP, and ISO-TASP protocols.

This model suffers because each service must be individually configured.

Jaromin created another honeypot that uses a stripped down version of Linux. He

was able to emulate a Koyo DirectLogic 405, utilizing HTTP and Modbus protocols,

on a Gumstick device [50]. This project works well within its scope, but can only

emulate the specifically chosen PLC.

2.4 Chapter Summary

This chapter discusses the reliance of critical infrastructure on ICS equipment.

This equipment was designed with priorities that differ from traditional IT systems.

However to achieve efficiency goals, ICS devices have been integrated into traditional

IT networks. This integration has created security concerns because if not correctly

configured these devices can be targeted by attackers.

To help protect against these attacks, various honeypot solutions have been ap-

plied to ICS networks. Each of these solutions has various pitfalls, including small

protocol emulation portfolios and extensive configuration requirements. These pitfalls
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highlight the need for a ICS specific honeypot that is easily configured to emulate the

vast variety of ICS protocols.
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III. Framework Integration

3.1 Overview

This chapter outlines the integration of an automatic application-layer emulator

with the Honeyd honeypot framework. This integration requires changes to both

components in order to achieve the desired functionality.

3.2 Motivation and Application

Previous research demonstrated that ScriptGenE was a capable application-layer

emulator. However in order to be a credible honeypot, it was clear that network-layer

emulation was required. To accomplish this goal it was determined that integration

with Honeyd was appropriate.

3.3 The ScriptGenE Framework

ScriptGenE is an extension of the ideas detailed by Corrado Leita [10]. It was

developed in Python, and consists of approximately 5700 lines of code (not including

third party libraries) [11]. The p-tree is the center of the framework with various

scripts responsible for its generation, manipulation, and replay.

3.3.1 Framework Overview.

The ScriptGenE framework consists of a series of Python files:

� ProcessPcap.py - Responsible for pulling TCP data out of Packet Capture

(PCAP) files.

� ScriptGenE.py - Builds initial and generalized p-trees.
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� GeneralizeTree.py - Generalizes initial p-trees built by ScriptGenE.py.

� CombineGtrees.py - Combines p-trees at their root.

� ScriptGenEemulate.py - Loads p-trees and replays server messages in context

during conversations with clients messages.

However as shown in Figure 12, the user only interacts with two of these files:

ScriptGenE.py and ScriptGenEemulate.py.

Figure 12. ScriptGenE Framework Overview

3.3.2 ScriptGenE.py.

ScriptGenE.py is responsible for creating the p-tree. This process begins with

a set of PCAPs consisting of a particular protocol conversation. Every complete

connection is then separated into a discrete tree. This tree is constructed by utilizing

TCP sequence and acknowledgment numbers to designate message order. As shown in

Figure 13, the nodes in the tree represent server messages, while the edges correspond

to client messages. These initial trees are then exported as Python pickle files, which

are serializations of the Python tree object hierarchy [51]. For reference, Figures 14

and 15 show example segments of the ENIP and HTTP protocol trees.

After the initialization step, ScriptGenE.py calls GeneralizeTree.py to combine the

initial trees. This is done by first consolidating every duplicate edge that has matching
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Figure 13. Protocol Tree Structure

parent nodes and client data. Then a second round of consolidation combines mes-

sages that are semantically equivalent. Semantic equivalence is decided through the

use of various macro/micro clustering algorithms. These algorithms are built upon

the Protocol Informatics (PI) project, which uses bioinformatic based algorithms

(e.g., Smith-Waterman and Needleman-Wunsch) to sequence protocol messages [52].

These edges are then represented by regular expressions (regex) that encompass the

characteristics of the combined messages.

Consolidation also locates environmental fields (e.g., IP addresses) and replaces

them with markers so that they can be replaced with the accurate details during

replay. Finally a default error is created, and the p-tree is exported to a Python

pickle file for replay in ScriptGenEemulate.py. This research did not focus on p-tree

creation, so this is just a brief overview of a complex process. For more information

on how p-trees are built and semantically combined see Warner’s description of the

ScriptGenE.py process [11].
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Figure 14. Example Segment of ENIP Protocol Tree
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Figure 15. Example Segment of HTTP Protocol Tree
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3.3.3 ScriptGenEemulate.py.

ScriptGenEemulate.py is the emulator script in the ScriptGenE framework re-

sponsible for the replay of the p-tree. The process begins by loading a Python pickle

file consisting of the p-tree for a particular protocol. A socket is then opened for the

client to connect. Starting at the root of the p-tree, ScriptGenEemulate.py matches

incoming client requests to the edges extending out of the current node. If a match

is found, the context switches to the next node following that matched edge. This

next node represents the next server message to be sent to the client.

If a match is not found within the current nodes edges, then a unknown transition

is encountered. This is handled by allowing backtracking from the current nodes

context. First, only previously traversed edges are considered, this is to increase

efficiency in polling protocols often utilized by PLCs. If a match is still not found,

then the entire p-tree is traversed in search of a match. If this still does not result in

a match then the default message is sent to the client.

The ScriptGenE framework is designed to be run from the Linux command line.

As shown in Figure 16, the command line options are extensive. Many of the options

are related to the proxy mechanism of the framework. This allows unknown messages

to be sent to a legitimate back-end PLC for the correct response. This research

does not utilize this capability, choosing to instead focus on improving viability as a

standalone PLC emulator.

3.4 ScriptGenE Framework Changes

While the primary effort of this research focuses on integrating the two previously

discussed frameworks, effort is also made to further improve the emulation of the

underlying ScriptGenE framework.
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Figure 16. ScriptGenEemulate.py Usage
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3.4.1 UDP Support.

As mentioned in Section 3.3.2, the ScriptGenE.py tree building process utilizes

TCP sequence/acknowledgment numbers to construct the p-tree. This allows for

quicker responses as each child node designates the next expected server message

that needs to be sent. This negates the need to always perform a complete tree

search.

This research expands this functionality by adding UDP support to the framework.

A new argument -U is added to ScriptGenEemulate.py to signify that the script

should open up a UDP socket in place of the usual TCP. As discussed in Section 2.2.3,

UDP messages are lightweight and do not include information used to construct the

organized TCP p-tree. Instead a separate UDP tree with a depth of one is created.

Using the algorithm described below, each edge, representing a possible client message

match, is checked to find the correct server message response.

3.4.2 Improved Backtracking Algorithm.

In the previous ScriptGenE implementation if the protocol tree match was not

exact to a designated regex or string, then either a default error was sent to the

client or the request was proxied to the legitimate back-end PLC. This is a significant

shortfall because it is likely a large portion of ScriptGenE implementations will not

have a back-end PLC. A simple example of this use-case in action is shown with a

typical GET request to a PLC’s web interface. Shown below is the GET request as

stored in a p-tree as well as a GET request for the same object.

1. Protocol Tree: GET /index.html User-agent: Mozilla/4.0 (compatible MSIE

9.0; Windows NT 6.1)

2. Client request: GET /index.html User-agent: Mozilla/5.0 (IE 11.0; Windows

NT 6.3)
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This client request should be considered a match to the stored p-tree request, since

they are both requesting the index.html resource. However, since the previous

algorithm did a simple Python str.find to see if all characters matched, these

would not be considered a match, and the client would be presented with a default

error. The new algorithm goes about solving this problem in a protocol agnostic

way consistent with ScriptGenE’s design. The problem could easily be solved for the

HTTP protocol with a non-agnostic solution by simply parsing the string after the

GET to find a match. However, this research is designed to solve it in a protocol

agnostic way.

The new algorithm is implemented within the unknown transition functionality

of ScriptGenE. This functionality is only called when a match cannot be found in

the protocol tree within the current node’s outgoing edges. This new algorithm

considers all edges in the protocol tree, and applies the algorithm described below.

Implementing it within the unknown transition functionality reduces the negative

impact on the emulator’s speed and efficiency.

The first step before running the algorithm is the generation of a “heatmap” of the

protocol. This heatmap is created on honeypot startup and involves comparing all of

the edges of the p-tree. Using these comparisons a mapping is created to show where

the variation occurs. This allows the algorithm to score the edges more accurately.

A match within a region in which all of the p-tree edges are very similar should be

scored lower than a match in a diverse region. An example heatmap, for the HTTP

tree, is shown in Figure 17. The darker the red, the more similar the region. The

darkest regions of the heatmap are the GET header and User-Agent region, this is

because all of the requests are GET requests from the same computer (i.e., same

User-Agent). Not all sections of the requests are the same length so boundary values
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tend to fade into the next regional color. This color is represented in the algorithm

with a value between 0 - 1.

Figure 17. Heatmap Example

The actual matching algorithm is built upon the “gestalt pattern matching”

method published in the late 1980’s by Ratcliff and Obershelp [53]. This algorithm

focuses on finding the longest contiguous matching subsequence and then applying

this idea recursively to the left and right of this subsequence. After this stage the

algorithm has a series of matching “blocks” that the two sequences have in common.

An example of this is shown in Figure 18, the input sequences are the two GET re-

quests shown above. The first two items in each match block (i.e., ab) designate the

index of the matching substring in each string respectively, while the size is simply

the length of the string.

The equation to compute the total match score between a protocol tree edge and

client request is

score =
n∑

i=0

(sizei ∗ ai/bi) ∗ heatmapab (1)

where n is the total number of match blocks, sizei is the size of the match string,

ai is the index of the match in the first string, bi is the index of the match in the

second string, and heatmapab is the heatmap score of both indices.

The quotient multiplier is utilized to give preference to matches that exist closer

together in their overall string. This is because even if a match is found, its appli-
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Figure 18. Matching Algorithm Example
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cability to the similarity of the two requests is significantly lower if they are located

in vastly different regions. When calculating the quotient the smaller index is always

the dividend to ensure larger gaps are scored as penalties. Also since the index starts

at zero, one is always added to both indices to avoid divide by zero errors.

This result of this equation is then stored as the score for that edge, this process

continues until all edges are considered and a max score is found.

3.4.3 Automatic Creation of Honeyd Profile.

As discussed in Section 2.3.1, the Honeyd framework relies on a configuration file to

create an emulated device. This file consists of an OS personality, port specifications,

MAC address, and designated services. This project was developed to automate the

creation of emulated PLCs. In order to accomplish this, Fingerprint.py was written

to automatically configure all of these options. This approximately 200-line Python

script creates a matching configuration file for a given target IP address. This script

utilizes an Nmap subprocess to scan the target IP address and uses the scan results to

set ports, designated services, MAC and IP addresses, and a new matching personality

to add to the Nmap database. This personality must be created because the database

of personalities is preset and defined by the Nmap version installed. It includes well-

known personality variants such as Windows, Linux, and Mac but often does not

include matches for PLC emulation.

3.4.4 ScriptGenEemulate.py Alterations.

In order to integrate ScriptGenE into the Honeyd framework, a few changes are

made. Previously -i interface was used as an argument to determine the IP

address of the ScriptGenEemulate.py instance. Integration with Honeyd requires the

ability to initialize each ScriptGenEemulate.py instance based on its applicable hon-
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eypot. To accomplish this a new -e ipaddress argument is added. When utilizing

ScriptGenEemulate.py within the Honeyd configuration file the value supplied to this

argument is -e $ipsrc. This serves as a placeholder that Honeyd replaces with the

IP address of whatever honeypot is applicable. This ensures that all traffic originates

from the appropriate PLC in the eyes of the attacker.

Also as shown in Figure 19, previously within ScriptGenEemulate.py multiple

options were set upon socket initialization. These are removed as they were causing

catastrophic errors when integrating with Honeyd. Honeyd is set up to hook into

socket calls, and intercept requests before being sent to the kernel. These initialization

options are not supported and cause segmentation faults during execution.

Figure 19. Removed ScriptGenEemulate.py Socket Options

Removal of those options caused problems with ScriptGenEemulate functionality.

Previously, the option to prevent combining of small TCP packets was enabled. Re-

moval caused the socket to combine many of the smaller messages into one large TCP

packet. This packet would not match any of the edges in the p-tree because in reality

it is multiple packets. This problem required reworking the logic of ScriptGenEemu-

late.py to allow for packet dissection and storage for future matching.

As shown in Figure 20, the framework also had segments of code written to handle

aspects of different protocols. To get RSLinx to recognize the emulated target, this

flag had to be set to 1 (default is -1) in the code for it to perform a set of actions.

This went against the protocol-agnostic goals of the framework, so these are removed

in favor of protocol-agnostic solutions.
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Figure 20. Non-Protocol Agnostic Code Required to Emulate ENIP Protocol

3.4.5 Honeyd Integration.

Integration with Honeyd, created by Neil Provos in 2003, presents a few technical

hurdles. This software was last officially updated in 2007 (version 1.5c), prior to

Nmap updating its OS detection algorithm. The ability of Honeyd to emulate a

chosen target relies on this detection algorithm, and thus this version was almost

obsolete. In 2011 a technology company called Datasoft wanted to utilize the Honeyd

functionality within a product, so they created Honeyd version 1.6d [54]. This new

version contained logic to handle the new Nmap OS detection method.

However, outside the scope of their project’s requirements, this new release was

not tested throughly for the effect of these updates on the original framework. This

led to segmentation faults when operating within this research’s scope, as ScriptGenE

is implemented as a Honeyd (version 1.6d) subsystem. As discussed in Section 2.2.4,

this allows the honeypot to share the one Python script for multiple connections,

instead of creating a new instance with each connection. These segmentation faults

are fixed by analyzing the code and correcting the functionality. One example of

these changes is shown in Figure 21, with the original code commented out. This

fix required that the pointer to the event was appropriately assigned. Previously the

event object was created, but it was not assigned to the connection (i.e., tmp�ev).

Therefore, when a connection was added to the queue with the event add method

it was pointing to a NULL object.
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Figure 21. Fixed Honeyd Code Example

Similarly, bugs are fixed in the way Honeyd sets TCP window size. As shown

in Figure 22, regardless of negotiation the window size was always initialized to 0.

This led to errors when transmitting data to the application layer as it was unable

to receive messages in one segment (i.e., one message would be divided into multiple

separate packets). This lead to failed attempts to generate p-tree matches on partial

data packets. To fix this issue the code was updated throughout to initialize the

window size to 65535, which is the maximum standard window size for TCP.

Figure 22. Zero Window Error

3.5 Design Summary

New features within the ScriptGenE framework include:

1. Fingerprint.py script for automatically configuring a Honeyd instance of a PLC.

2. New algorithm to select best-matching request in protocol tree.

3. Implemented UDP packet support.

4. ScriptGenEemulate.py changes to allow for integration with Honeyd.
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5. Fixes to Honeyd 1.6d to allow for integration.
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IV. Research Methodology

4.1 Goals

This research focuses on further developing a framework capable of automatically

configuring PLC honeypots. The following questions related to the extensions made

to ScriptGenE are addressed:

1. Can the emulator accurately choose best-fit responses when exact matches are

not available?

2. Can the integration with Honeyd fool detection/industry tools and emulate the

industrial network of a simulated prison?

4.2 Approach

For this research a small-scale prison network, utilized for training cyber first-

responders, is selected to be emulated. Developed by Joseph Daoud, this network is

shown in Figures 23 and 24 and consists of three PLCs responsible for controlling a

series of locks, all controlled by a centralized HMI [55]. This network is chosen because

successful emulation would demonstrate the ability to simulate a small network with

a series of honeypots.

To begin experimentation first PCAP files are generated by utilizing Wireshark to

record network traffic between the legitimate PLCs and the tools described in Section

4.6.3. These tools are chosen because they are representative of traffic generated by

an attacker in the early reconnaissance phase. After generating and capturing the

required protocol traffic with the legitimate PLCs, the PCAPs are used by Script-

GenE.py to build p-trees as discussed in Section 3.3.2.
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Figure 23. Training Prison Network [55]
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Figure 24. Training Prison Network HMI [55]

Then as the finalized Honeyd configure file shows in Figure 25, these p-trees are

supplied to ScriptGenEemulate.py as respective inputs for each port. Now when

Honeyd is initialized it creates three network layer honeypots (i.e., rockwell compact,

rockwell control, and siemens s7300) with these ScriptGenEemulate.py instances lis-

tening on ports to simulate application layer functionality. The Allen-Bradley Con-

trolLogix has two ScriptGenEemulate.py subsystems, as one is responsible for running

its web server. These honeypots are further configured to imitate the legitimate PLCs

by utilizing Fingerprint.py to import Nmap personalities (i.e., Allen Bradley Com-

pactLogix, Allen Bradley ControlLogix and Siemens s7-300 ) into Honeyd that match

each desired imitation target. Each honeypot is designated to have its own assigned

IP address, and a MAC address that corresponds to the PLC manufacturers’ assigned

address block. They are also all set up to respond to all TCP, UDP, and ICMP mes-

sages with filtered, or closed responses respectively. Note this only applies to ports

that are not otherwise designated to host a subsystem.
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Figure 25. Honeyd Configuration File

With the Honeyd honeypots created, the four experiments are conducted to eval-

uate the research goals.

1. Experiment 1: Utilize Nmap to scan the honeypots and determine accuracy of

network layer emulation. Accuracy is determined by comparing each honeypot’s

Nmap scan to the scan of its respective legitimate PLC.

2. Experiment 2: Determine if Shodan’s Honeyscore tool identifies the honeypots

as legitimate PLCs.
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3. Experiment 3: Using RSLinx and STEP7 software, determine if the honeypots’

application-layer can return the same results as the legitimate PLCs.

4. Experiment 4: Use Wget requests to analyze the new best-fit algorithm’s ability

to return correct results without exact matches.

4.3 System Boundaries

As shown in Figure 26, the System Under Test (SUT) is the Honeyd framework.

While the main Component Under Test (CUT) is the ScriptGenEemulate.py func-

tionality.

Figure 26. ScriptGenE Emulator Framework
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4.4 Parameters and Factors

The parameters of this experiment can be divided into two categories, workload

and system. Furthermore, parameters that vary are called factors with the different

variations designated as levels. This section describes the applicable parameters and

how they impact the SUT.

4.4.1 Workload Parameters.

The workload parameters in this experiment can be further divided into two cat-

egories —task and configuration. The configuration parameters supply the initializa-

tion options to the Honeyd configuration file. This includes a series of p-trees each

correlated to the correct port and protocol (e.g., port 44818:ENIP), a designated port

configuration, MAC address, and corresponding Nmap personality. The task param-

eters are used to evaluate emulation competency by utilizing the tools described in

Section 2.2.5.

4.4.1.1 Task.

For the first task Nmap is utilized to evaluate the ability of the SUT to emulate

the network layer of the target PLC. This test requires scanning both the honeypot

and legitimate PLC with the following Nmap command "nmap ipaddress -T4

-O". The -T4 argument specifies the speed at which to scan the target. This can

range from T1-T5, this value is chosen to ensure that the honeypot can withstand

the barrage of traffic typically sent by a scanning tool. The -O tells Nmap to attempt

to determine the OS details of the device. This is supplied to verify the ability of

the Fingerprint.py to create and import a matching OS personality into Honeyd.

This test is further extended by utilizing Nmap Scripting Engine (NSE) scripts called

enip-info and s7-info. As shown in Figures 27 and 28, these scripts are written to
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determine extra information about their respective PLC type. These scripts gather

this information by querying each PLC with protocol (i.e., ISO-TSAP or ENIP)

specific commands. The information varies slightly between each script (i.e., enip-

info or s7-info) but contains hardware specifications such as serial number, vendor,

type, and version.

Figure 27. Nmap NSE enip-info Results

Figure 28. Nmap NSE s7-info Results
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Honeyscore is used to evaluate the ability of the fully integrated SUT to conceal

its honeypot identity. Honeyscore was designed specifically to ascertain if a device is a

honeypot. The IP address of the honeypot is entered into the web-based tool, and the

result is displayed in the Hypertext Markup Language (HTML). To complete this test

the honeypot needs a public IP address and no firewall in place. To accomplish this

the experimental setup is altered by plugging the SUT directly into a cable modem.

This avoids any Network Address Translation (NAT) complications that could be

encountered by trying to port forward from behind a router.

STEP7 and RSLinx are utilized to verify that Honeyd integration did not in-

terfere with the honeypot’s ability to deceive industry standard tools. These tools

are supplied the IP address of the applicable honeypot, and will attempt to connect

and display the modules of the target PLC. These tools are GUI driven so SikuliX,

detailed further in Section 4.6.4, is utilized to automate these tasks.

Finally, the Wget tool is used to test the ability of the SUT to handle unknown

client requests. The HTTP is chosen for this experiment because it is an example

of a protocol that benefits from non-exact matches, due to the variation in browser

user-agent information that allows the server to tailor its response to the client. The

task utilizes Wget’s ability to set the user-agent to craft requests with varying lev-

els of variation from the request stored in the SUT’s protocol tree. This task is

carried out using the command "wget -R target.ip.address/index.html

--user-agent= variation string". The -R argument tells Wget to recur-

sively download all linked resources. This allows the PLC’s entire web server to be

downloaded with one Wget command.

This variation string is randomly selected from a user agent database of 180,000

real world choices [56]. These agents range from the typical browser (e.g., IE and

Firefox) to various specific Internet applications (e.g., Lincoln State Web Browser).
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The ability to match each request with the right resource determines the ability of

the SUT to handle unknown requests.

4.4.1.2 Honeyd Configuration.

Each honeypot is assigned a different personality appropriate to the PLC it is

trying to imitate. This personality includes designating which ports should be opened

or closed, MAC and IP address, services, and the OS target. As mentioned in Section

3.4.3, these personalities are created with the Fingerprint.py script that generates a

personality based upon a given IP address.

4.4.2 System Parameters.

As shown in Figure 26 the system parameters consist of both PLC configurations

and computing parameters. A detailed description of the experimental setup is in

Section 4.7. The host laptop designates the computing parameters. Both the laptop

and PLC configurations are:

Hewlett Packard 8570W Workstation

� Microsoft Windows 7 Service Pack 1

� 2.6GHz Intel Core i7-3720QM processor

� 16GB RAM

� VMware Workstation version 12.1.1 build-3770994

Allen-Bradley ControlLogix1756 (L55) PLC

� Firmware Version 5.001 Build 1

� Slot 0 - L55 Controller with mode set to REM Run (remote Run)

� Slot 1 - 1756-EWEB EtherNet/IP ENBT
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� Slot 2 - 1756-IB16/A DCIN - 16 Point, 24V DC Input

� Slot 3 - 1756-OB8/A DCOUT - 8 Point DC Output

� Slot 4 - 1756-OB8/A DCOUT - 8 Point DC Output

Allen-Bradley CompactLogix L23E 1769 PLC

� Firmware Version 5.001 Build 1

� Slot 0 - L55 Controller with mode set to REM Run (remote Run)

� Slot 1 - Embedded IQ16F - High Speed 24V DC Input

� Slot 2 - Embedded OB16 - 16 Point 24V DC Output

� Slot 3 - Embedded IF4XOF2 - Combo Analog 4 Point Input, 2 Point

Output

� Slot 4 - Embedded 2 Channel Quadrature, 4 Channel Single-ended HSC

Input

Siemens SIMATIC S7-300 PLC

� Firmware version 2.6

� Slot 2 - CPU 315-2 Controller with one Ethernet port

� Slot 4 - Discrete I/O (DI16xDC24V) - 16 Point 24V DC Input

� Slot 5 - Discrete I/O (DO16xDC24V/0.5A) - 16 Point 24V DC Output

� Slot 6 - Discrete I/O (DO16xAC120V/230V/1A) - 16 Point 120V/230V

AC Output

� Slot 7 - Discrete I/O (DO16xRel. AC120V/230V) - 16 Point 120V/230V

AC Output

� Slot 8 - Analog I/O (AI8xTC) - 8 Point Thermocouple Analog Input

� Slot 9 - Analog I/O (AI8x16Bit) - 8 Point 16 Bit Analog Input
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4.5 Performance Metrics

Each of the previously mentioned tasks is evaluated using separate performance

metrics, based on the type of results returned by the evaluation tools.

Nmap signature similarity is evaluated by comparing the scan results of the legit-

imate PLCs to those of the SUT. The tests divide the response into four categories:

MAC address, IP address, port specifications, and OS details. These categories are

explicitly defined in each Nmap scan summary. Each category is then scored as a

PASS or FAIL depending if it exactly matches the legitimate PLC.

The Honeyscore performance is determined by the results of supplying the tool

the IP address of the SUT. Honeyscore returns either of the two results shown in

Figure 29. Based on this result the test is scored as a PASS or FAIL.

Figure 29. Possible Honeyscore Results

RSLinx and STEP7 performance is evaluated by utilizing SikuliX to view the

PLC module hierarchy. As shown in Figure 30, RSLinx has two different possible

outcomes. The successful outcome correctly includes all of the appropriate modules

for each PLC as described in Section 4.4.2, while the unsuccessful outcome outputs
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a red error and simply displays the PLC as an unrecognized device. STEP7 also has

two different outcomes when displaying the PLC information. As shown in Figure 31,

STEP7 will either successfully display the list of module specifications or will present

an error.

Figure 30. Successful and Failed Module Hierarchy Browsing in RSLinx

Figure 31. Successful and Failed Module Hierarchy Browsing in STEP7

Determining the results of the Wget experiments is done by evaluating the files

downloaded. A request is sent for the desired resource on the legitimate PLC, then

that same request is sent to the honeypot. The results are evaluated based on the

similarity of the responses. This similarity is determined by running a Linux diff

command diff -s realfile.html emulatedfile.html, on the files down-

loaded from both the legitimate and emulated web server. The -s option specifies

to report when the two files are the same. If the two files match it is designated as a

PASS.
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4.6 Experimental Setup

4.6.1 Overview.

As shown in Figure 32, the experimental setup consists of series of virtual machines

and PLCs all connected by a switch. Figure 33 shows how this setup is altered to

complete the Honeyscore tests as described above in Section 4.4. There are two key

differences in this Honeyscore setup. First, the SUT is installed on the bare metal

laptop with same software and hardware specifications, instead of within a VM, to

avoid VM NAT complications. Second, the SUT is directly connected to a cable

modem to provide a non-NAT IP address to Honeyscore.

Figure 32. Experiment Setup

4.6.2 Machine Configurations.

All physical hardware specifications are detailed in Section 4.4.2. The experiments

in total consist of 4 different VMs to handle the various tasks. The primary VM that

hosts the SUT is Ubuntu 12.04; the exact specifications are listed in Table 1. The
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Figure 33. Altered Honeyscore Experiment Setup

version of Honeyd utilized for this experiment is 1.6d. This version of Honeyd was

modified by DataSoft from the final official 1.5c Honeyd release to compensate for

the changes to Nmap’s OS scanning method. This version also has various custom

modifications, as discussed in Section 3.4.5, to allow proper integration with Script-

GenE.

Table 1. System Under Test VM Configuration

Ubuntu 12.04

1 processor core Linux kernel 3.13.0-32-generic bash 4.2.25
2GB RAM Python 2.7.3 Nmap 7.04

20GB HD space gcc 4.6.3 Honeyd 1.6d

Both Windows XP VMs are nearly identical with the only exception being the

software installed. One has the RSLinx software for querying Allen Bradley PLCs

(Table 2) while the other has STEP7 software for Siemens PLCs (Table 3).
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Table 2. RSLogix Windows XP VM Configuration

Windows XP Service Pack 3

2 processor cores Python 2.7.2 SikuliX 1.1.0
2GB RAM Java 1.7.0u25

60GB HD space RSLinx Classic 2.59.02

Table 3. STEP7 Windows XP VM Configuration

Windows XP Service Pack 3

2 processor cores Python 2.7.2 SikuliX 1.1.0
2GB RAM Java 1.7.0u25

60GB HD space STEP7 5.5

The last VM is also Ubuntu 12.04 based. This VM acts as a Wget and Nmap

interrogator for this experiment. This VM’s configuration and software information

is listed in Table 4.

Table 4. Tool Hosting Linux VM Configuration

Ubuntu 12.04

2 processor core Linux kernel 3.13.0-32-generic wget 1.13.4
4GB RAM Nmap 7.04 bash 4.2.25

80GB HD space Firefox 31.0

4.6.3 Experimental Scripts.

Experiment automation and data collection is controlled by a custom script for

each experiment. These scripts perform the actual experiment and generate files to

be analyzed. The scripts were run on the same set of initialized honeypots in the

order specified below and include

1. NMAP.py - Ran 30 times

� Runs and saves the respective Nmap scans on all of the PLCs (emulated

and legitimate)
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� Restarts the Nmap process after each scan

2. wget.py - Ran 500 Times

� Chooses a random user-agent from the database

� Sends the designated Wget request to target server to download files

� Uses a Linux diff command to evaluate each downloaded file as PASS

or FAIL. This is done by comparing each file to its target file from the

legitimate PLC

� No restart required as each Wget process is killed after downloads complete

3. RSLinx.py - Ran 200 times

� Runs RsLinxRestart.bat to restart RSLinx process

� Runs DeleteDriver.sikuli to delete previous drivers

� Runs ConfigDriver.sikuli to add required driver

� Runs RSWho.sikuli to display modules and determine result

4. STEP7.py - Ran 30 times

� Runs step7restart.bat to restart STEP7 process

� Runs STEP7.sikuli to open STEP7

� Runs ConfigNode.sikuli to add the PLC as a node

� Runs BrowseModules.sikuli to browse modules

� Runs DeleteProjectObjects.sikuli to delete the PLC
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4.6.4 GUI Automation.

RSLinx and STEP7 are tools that are operated with a Graphical User Interface

(GUI). Therefore, simple command line arguments cannot be used to script interac-

tion. So to automate these experiments the MIT Java project SikuliX was utilized.

SikuliX utilizes OpenCV to search the screen for elements and then execute actions

[57]. As shown in Figure 34, this is all outlined in a Python script, which consists

of code to search for GUI elements on the screen and perform an action (e.g., click,

type). If the actions cannot be completed then the script returns a ”FAIL”.

Figure 34. Sikulix Code Snippet

4.7 Methodology Summary

This chapter details how this research uses different tools to evaluate the integra-

tion of Honeyd and ScriptGenE.
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V. Results and Analysis

5.1 Overview

The following sections outline the results for each individual task. Overall the

tasks demonstrate that the SUT is successfully able to emulate the legitimate PLCs

response to the chosen tools.

5.2 Metric 1 - Nmap

This experiment was designed to test the network-level emulation of the created

honeypots. Each stage of this experiment was carried out 30 times with each honeypot

after testing revealed the exact same result each run (i.e., zero confidence interval).

The first stage of this experiment involved subjecting all of the emulated PLCs to

traditional Nmap scans. As shown in Table 5, the SUT was capable of replicating

the identity of the legitimate PLCs. Each column represents a different aspect of the

scan including MAC address, IP address, OS type, and port specifications. A PASS

in a column represents a successful emulation for all 30 runs. Examples of each PLCs

Nmap output compared to its imitation target are shown in Figure 35.

Table 5. Nmap Experiment Results

Honeypot MAC Address IP Address OS Type Ports

192.168.159.200 PASS PASS PASS PASS
192.168.159.201 PASS PASS PASS PASS
192.168.159.202 PASS PASS PASS PASS

(PASS indicates exact emulation match for all 30 runs)

The second stage results in Tables 6 and 7 demonstrate the ability of the SUT

to handle the more complex scanning techniques of the NSE scripts. These scripts,

as described in Section 4.4.1.1, use protocol specific techniques to provide additional
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information about the target. Once again each column represents a different aspect of

the information returned for the emulated PLC. Examples of each PLC’s Nmap NSE

output compared to its imitation target are shown in Figure 36. For the IP address,

a PASS occurs if the IP address returned by the NSE script matches the target IP

address entered into the NMAP scan, a mismatch here would raise suspicion. For

all other columns, a PASS is achieved if the response exactly matches the applicable

legitimate PLC response.

Table 6. NSE enip-info Results

Honeypot Vendor Name Serial Product # Revision Device IP

192.168.159.200 PASS PASS PASS PASS PASS PASS
192.168.159.201 PASS PASS PASS PASS PASS PASS

(PASS indicates exact emulation match for all 30 runs)

Table 7. NSE s7-info Results

Honeypot Hardware Name Version Type Module Serial #

192.168.159.202 PASS PASS PASS PASS PASS PASS

(PASS indicates exact emulation match for all 30 runs)

5.3 Metric 2 - Honeyscore

The Honeyscore tool did not perform as expected for this experiment. The SUT

was configured to have a direct connection to the Internet. Despite this, Honeyscore

was unable to return informative results. Instead, it displayed the message shown in

Figure 37. This experiment was carried out 30 times with each emulated target after

testing revealed the exact same result every time (i.e., zero confidence interval).

In order to verify that neither the configuration or SUT was at fault, an external

connection to the SUT was successfully performed. This connection, made by a mobile

device through the cellular network, was able to load the homepage of the PLC. This
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Figure 37. Honeyscore Results

demonstrated that the fault lied somewhere outside of this research’s control. Failed

attempts were made to contact the tool creator to determine possible reasons for its

failure. Further understanding of the functionality of the closed-source Honeyscore

tool is required to interpret these results.

5.4 Metric 3 - PLC Module Discovery

The following results demonstrate the ability of the SUT to handle complex proto-

col emulation. These tasks are carried out by the appropriate manufacturer’s software

(i.e., RSLinx or STEP7). The RSLinx experiment was carried out 200 times for each

honeypot, after testing showed a variable success rate. The STEP7 experiment was

only carried out 30 times after testing show each result was exactly the same (i.e.,

zero confidence interval). The results in Figure 38 show the comparisons between the

successful emulation and legitimate PLCs. These comparisons show that emulated

PLC’s modules, as listed in Section 4.4.2, were correctly displayed to exactly match

the modules of their respective legitimate PLC. For RSLinx, the one difference is that

the IP address of each emulated PLC correctly matches the IP address assigned in

Honeyd, instead of the IP address of its emulation target.
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5.4.1 RSLinx Tasks.

The results of the RSLinx tasks for the Allen Bradley PLCs are shown in Table 8.

This table is divided into three rows. The first two rows each represent an emulated

honeypot, while the last row represents the results from the legitimate PLCs. The

.200 honeypot shows a success rate of 82 percent, with an average of 116 seconds

to correctly display the PLC and corresponding modules. The .201 exhibits similar

results with a success rate of 77 percent and a matching 116 second average time.

This is compared to a 100 percent correct display rate with an average time of 10

seconds for the legitimate PLCs.

Table 8. RSLinx Results

Honeypot Avg Success Time (sec) Success % Standard Deviation

192.168.159.200 115.965 82% 77.708
192.168.159.201 116.384 77% 81.998
Legitimate 10.023 100% 0.243

The results can be explained by analyzing the p-trees utilized to create the em-

ulated PLCs. These p-trees are built from a PCAP of requests and responses that

the RSLinx software sent to the legitimate PLC. As shown in Figure 39, for these

legitimate PLCs RSLinx sends only one sequence of the Get Attribute All requests.

However, as shown in Figure 40, for the emulated PLCs, RSLinx sometimes sends

a series of Send RR Data requests prior to sending the Get Attribute All request

that the emulated PLCs expect. For this period of time, the honeypots are unable

to correctly respond. As shown in Figure 41, this difference in requests is likely due

to a series of resets that the legitimate PLC sends prior to communication. This is

different than the honeypots which begin communication with RSLinx’s first SYN

request.
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Figure 39. Attribute All Request Sequence

Figure 40. Send RR Data Request Sequence

Figure 41. Series of Resets by Legitimate PLC
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To combat this issue, a simulated RSLinx client was created in Python to query the

legitimate PLC with these Send RR Data requests to ascertain the correct response.

The hope was that by utilizing these correct responses a better p-tree could be built

to handle the protocol. Despite these improved p-trees the emulated PLCs could not

respond successfully to the Send RR Data requests from RSLinx. This is likely due

to inaccurate emulation of RSLinx by the simulated Python RSLinx client that led

to a corrupted p-tree.

To further understand why the variation was so high and to ascertain a pattern in

RSLinx requests, this data was graphed as shown in Figure 42. These results show no

pattern in the time required to successfully respond. RSLinx was restarted between

each run to minimize uncontrolled variables, yet seemingly the series of messages was

still random. Further knowledge of how RSLinx determines the sequence of messages

to send is required to enhance this protocols emulation.

Figure 42. RSLinx Module Display Graph for 192.168.159.200

5.4.2 STEP7 Tasks.

The results for the STEP7 software are much more consistent than those for

RSLinx. As shown in Table 9, the emulated Siemens honeypots were able to correctly

display with 100 percent accuracy. There is no noticeable difference between time
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recorded for the honeypot versus the legitimate PLC, as both are within each other’s

standard deviation.

Table 9. STEP7 Results

Honeypot Avg Success Time (sec) Success % Standard Deviation

192.168.159.202 4.2 100% 0.32
Legitimate 4.065 100% 0.25

These results further show the importance of an accurate p-tree. STEP7 uses a

more advanced protocol for communication with the PLC. However, the honeypot was

significantly more successful compared to the Allen-Bradley PLCs. This is because

although the protocol is more advanced, it is also more consistent. When the PCAPs

of the experiment are investigated, it is seen that STEP7 organizes its discovery and

connection requests in the same order every connection. This consistency allows an

accurate p-tree to be created to emulate the protocol. With an accurate p-tree the

honeypot can emulate this complex ISO-TSAP protocol even better than the simpler

ENIP protocol.

5.5 Metric 4 - Best-Fit Algorithm

This experiment evaluates the new best-fit algorithm compared to the previous

iterations matching algorithm. As described in Section 4.2, this test involves querying

the emulated PLC’s web server with GET requests, each containing a different user-

agent from a database of real world examples. This experiment was carried out

500 times, in order to ensure a wide variety of random user-agent selections. The

selection database had some slight variations of the same particular user-agent. By

selecting 500 user-agents it was ensured that the sample size would consist of sufficient

variation. The total file downloads for each ScriptGenE version is 29,500, because
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Table 10. Wget Results

ScriptGenE version Wget Requests Correct Downloads Files Downloaded Success %

New 500 20001 29500 67.8%
Previous 500 0 29500 0%
New Non-Integrated 500 29500 29500 100%

each Wget request sends an additional 59 requests for files, as it recursively downloads

linked resources.

As Table 10 shows, the new algorithm integrated with Honeyd was able to match

unknown requests with 67.8 percent accuracy. While the previous matching algorithm

was unable to match any of the requests with their correct resource. This is expected

because the previous algorithm only finds exact matches to the requests stored in

the p-tree. This table also shows a success rate of 100 percent when the ScriptGenE

framework was tested alone (i.e., not integrated with Honeyd). This test was carried

out after noticing that all of the failures occurred when Honeyd did not transfer

the received data to the ScriptGenE subsystem. This failed transfer required the

algorithm to find an approximate match based on no received data, which resulted

in a failure.

After observing the standalone ScriptGenE is able to match all requests success-

fully, further inspection was required. It was discovered that Honeyd was unable

to keep up with the sheer amount of connections. This can be seen clearly by in-

specting the results of loading the emulated web server in a browser. As shown in

Figure 43, the new integrated system failed to resolve some of the resources on the

page (e.g., header logos and sidebar CSS formatting), while the standalone system

performed flawlessly. This test demonstrates the overhead required for Honeyd to

retrieve network traffic, choose designated subsystem, transfer the data, and run the

ScriptGenEemulate Python script. This overhead is encountered on every connection,

and this PLC homepage requires 59 simultaneous connections. If one of these data
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transfers is missed, then the data is lost. This is, as shown in Figure 44, Honeyd

immediately sends an acknowledgment of a packet to the sender, before guaranteeing

that the subsystem received the data. This means that there is no attempt to resend.

The links can be traversed on the new integrated homepage to further demonstrate

that the problem is with the connection overload and not emulation. When reloaded

these links correctly direct the client to the right resources; this is because at that

time the influx of connections has ceased.

Another smaller contributing factor to the integrated system’s failure to display

the PLC homepage is the stateless nature of the HTTP protocol. As shown in Figure

45, the p-trees for HTTP and ISO-TSAP differ significantly in structure. With ISO-

TSAP, each node has specific edges to consider for the next matching attempt. With

HTTP, all root edges must be considered, thus resulting in longer computation cycles.

If these cycles are being processed when a new connection is received possible data

loss can occur.
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Figure 44. Honeyd Data Acknowledgment
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VI. Conclusions

6.1 Introduction

This chapter presents a summary of the research conclusions, impact, and future

work. Section 6.2 gives conclusions from the experiment results. Section 6.3 discusses

the impact of the research. Section 6.4 presents several ideas and recommendations

for future work and related research.

6.2 Research Conclusions

This research successfully provides an enhanced PLC emulator based on the

application-layer replay framework found in ScriptGenE. The outcome of each re-

search goal from Section 4.1 is discussed below. Each goal is satisfied successfully as

shown through the conducted experiments.

6.2.1 Integrated Emulation Performance.

Girtz’s research showed a success rate of 33 percent and 0 percent for non-proxied

ENIP and ISO-TSAP traffic [58]. This research’s success rates of 77 percent and 100

percent for the ENIP and ISO-TSAP application layer protocols increased this by

34 and 100 percent respectively. The emulated honeypots were also able to correctly

emulate the network layer of the legitimate PLCs with 100 percent accuracy. These

results combined to allow successful emulation of the training prison’s industrial net-

work, without relying on a back-end proxy PLC.

6.2.2 Best-Fit Algorithm.

The new best-fit algorithm was shown to correctly select the correct response with

100 percent accuracy for the HTTP protocol. This is improved over the 0 percent non-
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proxied accuracy for previous research. One example of this functionality in practice,

is successful emulation of a web server regardless of the attacker’s browser. This

algorithm was developed to be protocol agnostic so it should also improve emulation

of other protocols.

6.3 Significance of Research

This research was carried out to further develop a tool that can be used to protect

the nation’s critical infrastructure.

6.3.1 Contributions.

The primary contributions of this research are the integration of Honeyd with the

ScriptGenE framework, improvements to ScriptGenE functionality, and automatic

honeypot configuration.

The most significant overall enhancement is the integration of the Honeyd and

ScriptGenE frameworks, which now provides both a network and application layer

honeypot capable of emulating a legitimate PLC. This framework includes the Fin-

gerprint.py script to automatically configure the honeypot instances.

The main contribution to the ScriptGenE framework is the improvement of the

matching algorithm. Previously unknown traffic was unable to be matched, even with

just small variations. With the new improvements, testing showed unknown HTTP

messages can be matched with 100 percent accuracy.

6.3.2 Applications.

Now that the two frameworks have been integrated, the SUT can easily be used to

provide a cheap, accurate, and simple way to emulate expensive PLC devices. This

can be utilized in various industries including industry and academia.
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6.4 Future Work

The research described in this thesis has significantly improved a framework de-

signed to automatically emulate PLCs. Despite these improvements, future work can

be done to further develop it into a more reliable and consistent product.

6.4.1 Testing.

Further testing of ScriptGenEemulate.py is required to show it can be deployed

in a production environment. Testing with additional protocols, tasks, and PLC

configurations can show the emulator is able to handle diverse network conditions.

6.4.2 Enhancing ScriptGenEemulate.py Algorithms.

The following sections describe the variety of ways the current ScriptGenEemulate

implementation can be enhanced.

6.4.2.1 UDP Support.

Currently UDP support is in place but with trivial testing or hardening. Further

evaluation is required to evaluate effectiveness. Besides evaluation, there are multiple

areas to improve upon the UDP functionality. One advancement is to include the

ability to handle out of order UDP traffic by linking request/response packets based

on data payload. Currently the PCAP must be organized so that each UDP request

packet corresponds to the next response packet. Another key improvement in this

area is to fix the bugs in Honeyd so that ScriptGenE UDP support can operate within

an emulated honeypot. Currently Honeyd does not correctly transfer data to the UDP

subsystem. Similar changes to those made by this research to the TCP support will

likely need to be made.
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6.4.2.2 Unknown Transition Algorithm.

Future research can be done to enhance the emulators ability to quickly select

a best match, when an exact match is not available. The speed of this algorithm

can likely be improved with various optimizations. Also further testing with other

protocols is required to verify the protocol agnostic nature of this algorithm.

6.4.3 Honeyd Connection Overload.

Experimentation showed that high connection quantities can cause Honeyd to fail

to transfer the received network traffic to the designated subsystem. This significantly

hampered the ability of the integrated SUT to achieve high levels of accuracy. Two

possible solutions are suggested by this research. First, the Honeyd logic could be

altered to hold the acknowledgment of a packet until it is verified that the subsystem

received it. This will allow the client to resend lost data so the subsystem can even-

tually find a match. Alternatively, Honeyd could be altered to have a timeout period

where it solely focuses on handling connections. During this time all resources are

spent receiving data from connections. This could protect against data loss due to

a large influx of connections. Future research should investigate and fix this issue to

greatly enhance the credibility of this framework.

6.4.4 Manual P-tree Editing.

This research further enhanced the SUT’s ability to automatically create a PLC

honeypot. However, in some instances human intuition can outperform this automa-

tion. The ability to manually edit a created p-tree with the correct information would

be valuable to the emulation process.
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6.5 Chapter Summary

This chapter presents the conclusions and impact of the ScriptGenEemulate re-

search. To conclude, several recommendations for future work are provided which

build upon and extend the emulation techniques developed in this research.
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19. Éireann P. Leverett. Quantitatively assessing and visualising industrial system
attack surfaces, June 2011. Retrieved 8 February 2016 from http:// www.cl.cam.
ac.uk/ ∼fms27/ papers/ 2011-Leverett-industrial.pdf .

20. Kelly J. Higgins. ‘Project SHINE illuminates sad state of SCADA/ICS se-
curity on the net. Dark Reading blog entry, 2013. Retrieved 23 June
2016 from http:// www.darkreading.com/ vulnerabilities---threats/ project-shine-
illuminates-sad-state-of-scada-ics-security-on-the-net/ d/ d-id/ 1140691 .

21. Paul M. Williams. Distinguishing Internet-facing ICS devices using PLC program-
ming information. Master’s thesis, Air Force Institute of Technology, Wright-
Patterson AFB OH, USA, June 2014 (ADA602989). Retrieved 23 June, 2016
from http:// www.dtic.mil/ cgi-bin/ GetTRDoc?AD=ADA602989 .

84

oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA620212
oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA620212
http://www.icir.org/vern/papers/gq-techreport.pdf
http://www.controlglobal.com/articles/2012/boyes-clayton-serene-economic-recovery/?start=1
http://www.controlglobal.com/articles/2012/boyes-clayton-serene-economic-recovery/?start=1
http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
http://www.whitehouse.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil
http://shodan.io/
http://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf
http://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf
http://www.darkreading.com/vulnerabilities---threats/project-shine-illuminates-sad-state-of-scada-ics-security-on-the-net/d/d-id/1140691
http://www.darkreading.com/vulnerabilities---threats/project-shine-illuminates-sad-state-of-scada-ics-security-on-the-net/d/d-id/1140691
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA602989


22. Kyle Wilhoit. Who’s really attacking your ICS equipment? Tech-
nical report, Trend Micro, Inc., 2013. Retrieved 23 June 2016
from http:// www.trendmicro.com/ cloud-content/ us/ pdfs/ security-intelligence/
white-papers/ wp-whos-really-attacking-your-ics-equipment.pdf .

23. Kyle Wilhoit. The SCADA that didn’t cry wolf. Technical report, Trend Micro,
Inc., 2013. Retrieved 23 June 2016 from http:// www.trendmicro.com/ cloud-
content/ us/ pdfs/ security-intelligence/ white-papers/ wp-the-scada-that-didnt-
cry-wolf.pdf .

24. Roland C. Bodenheim. Impact of the Shodan computer search engine
on Internet-facing Industrial Control System devices. Master’s thesis, Air
Force Institute of Technology, Wright-Patterson AFB OH, USA, March
2014 (ADA601219). Retrieved 23 June, 2016 from http://www.dtic.mil/cgi-
bin/GetTRDoc?AD=ADA601219.

25. Ruben Santamarta. Project Basecamp – attacking ControlLogix. In 5th SCADA
Security Scientific Symposium, Miami Beach, FL, USA, January 2012. Digital
Bond. Retrieved 23 June 2016 from http:// reversemode.com/ downloads/ logix
report basecamp.pdf .

26. David P. Duggan, Michael Berg, John Dillinger, and Jason Stamp. Penetra-
tion testing of Industrial Control Systems. Technical Report 2005-2846P, San-
dia National Laboratories, March 2005. Retrieved 26 October 2016 from http:
// energy.sandia.gov/ wp/ wp-content/ gallery/ uploads/ sand 2005 2846p.pdf .

27. Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, and Tim Berners-Lee. RFC 2616: Hypertext Transfer Protocol
– HTTP/1.1, 1999. Retrieved 23 June 2016 from http:// tools.ietf.org/ html/
rfc2616 .

28. Jon Postel. RFC 791: Darpa internet program protocol specification, 1981. Re-
trieved 23 June, 2016 from http:// www.ietf.org/ rfc/ rfc0791.txt .

29. Fred Cohen. The deception toolkit home page and mailing list, 2012. Retrieved
22 Jan 2017 from http:// all.net/ dtk/ .

30. Tom Liston. Labrea: ”sticky” honeypot and ids, 2003. Retrieved 22 Jan 2017
from http:// labrea.sourceforge.net/ labrea-info.html .

31. George Bakos. Tiny honeypot, 2013. Retrieved 22 Jan 2017 from https:// github.
com/ tiny-honeypot/ thp.

32. Ryan McGeehan. The ”google hack” honeypot. Retrieved 22 Jan 2017 from
http:// ghh.sourceforge.net/ , year = 2007.

33. Laurent Oudot. Php honeypot project. Retrieved 22 Jan 2017 from http://
rstack.org/ phphop, year = 2006.

85

http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-whos-really-attacking-your-ics-equipment.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-whos-really-attacking-your-ics-equipment.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-scada-that-didnt-cry-wolf.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-scada-that-didnt-cry-wolf.pdf
http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/white-papers/wp-the-scada-that-didnt-cry-wolf.pdf
http://reversemode.com/downloads/logix_report_basecamp.pdf
http://reversemode.com/downloads/logix_report_basecamp.pdf
http://energy.sandia.gov/wp/wp-content/gallery/uploads/sand_2005_2846p.pdf
http://energy.sandia.gov/wp/wp-content/gallery/uploads/sand_2005_2846p.pdf
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.ietf.org/rfc/rfc0791.txt
http://all.net/dtk/
http://labrea.sourceforge.net/labrea-info.html
https://github.com/tiny-honeypot/thp
https://github.com/tiny-honeypot/thp
http://ghh.sourceforge.net/
http://rstack.org/phphop
http://rstack.org/phphop


34. Gordon Lyon. Nmap, 2016. Retrieved 18 August 2016 from https:// nmap.org/
book/ man-host-discovery.html .

35. John Matherly. Honeyscore, 2016. Retrieved 20 August 2016 from honeyscore.
shodan.io.

36. GNU Project. Wget, 2016. Retrieved 20 August 2016 from https:// www.gnu.
org/ software/ wget/ .

37. Bradley Allen. Rslinx classic, 2016. Retrieved 20 August 2016 from
http:// literature.rockwellautomation.com/ idc/ groups/ literature/ documents/
gr/ linx-gr001 -en-e.pdf .

38. Siemens. Step7, 2016. Retrieved 21 August 2016 from http:// w3.siemens.com/
mcms/ simatic-controller-software/ en/ step7/ Pages/ Default.aspx .

39. Xuxian Jiang and Dongyan Xu. BAIT-TRAP: a catering honeypot framework.
Technical report, Purdue University, 2004. Retrieved 23 August, 2016 from http:
// friends.cs.purdue.edu/ pubs/ BaitTrap.pdf .

40. Vishal Chowdhary, Alok Tongaonkar, and Tzi-cker Chiueh. Towards automatic
learning of valid services for honeypots. In Distributed Computing and Internet
Technology, Proceedings of the First International Conference on, ICDCIT’04,
pages 469–469, Berlin, Heidelberg, 2004. Springer-Verlag. Retrieved 31 August,
2016 from http:// seclab.cs.sunysb.edu/ alok/ papers/ icdcit04.pdf .

41. Deanna R. Fink. Toward automating web protocol configuration for a pro-
grammable logic controller emulator. Master’s thesis, Air Force Institute of Tech-
nology, Wright-Patterson AFB OH, USA, June 2014. Retrieved 24 August 2016
from http:// www.dtic.mil/ cgi-bin/ GetTRDoc?AD=ADA602990 .

42. Weidong Cui, Vern Paxson, Nicholas Weaver, and Randy H. Katz. Protocol-
independent adaptive replay of application dialog. In Network and Distributed
System Security Symposium, February 2006. Retrieved 1 September 2016
from http:// www.internetsociety.org/ doc/ protocol-independent-adaptive-replay-
application-dialog .

43. Corrado Leita, Marc Dacier, and Frederic Massicotte. Automatic handling of
protocol dependencies and reaction to 0-day attacks with ScriptGen based hon-
eypots. In Recent Advances in Intrusion Detection, Proceedings of the 9th In-
ternational Conference on, RAID’06, pages 185–205, Berlin, Heidelberg, 2006.
Springer-Verlag.

44. Christian Kreibich, Nicholas Weaver, Chris Kanich, Weidong Cui, and Vern Pax-
son. GQ: Practical containment for measuring modern malware systems. In In-
ternet Measurement Conference, Proceedings of the 2011 ACM SIGCOMM Con-
ference on, IMC ’11, pages 397–412, New York, NY, USA, 2011. ACM.

86

https://nmap.org/book/man-host-discovery.html
https://nmap.org/book/man-host-discovery.html
honeyscore.shodan.io
honeyscore.shodan.io
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/linx-gr001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/gr/linx-gr001_-en-e.pdf
http://w3.siemens.com/mcms/simatic-controller-software/en/step7/Pages/Default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/en/step7/Pages/Default.aspx
http://friends.cs.purdue.edu/pubs/BaitTrap.pdf
http://friends.cs.purdue.edu/pubs/BaitTrap.pdf
http://seclab.cs.sunysb.edu/alok/papers/icdcit04.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA602990
http://www.internetsociety.org/doc/protocol-independent-adaptive-replay-application-dialog
http://www.internetsociety.org/doc/protocol-independent-adaptive-replay-application-dialog


45. Mariano Graziano, Corrado Leita, and Davide Balzarotti. Towards network con-
tainment in malware analysis systems. In Computer Security Applications Con-
ference, Proceedings of the 28th Annual, pages 339–348. ACM, 2012.

46. Christian Martin Fuchs and Martin Brunner. Towards next generation mal-
ware collection and analysis. Advances in Security, International Journal on,
6(1 and 2):32–48, 2013. Retrieved 31 August 2016 from http:// www.thinkmind.
org/ download.php?articleid=sec v6 n12 2013 3 .

47. Lukas Rist, Johnny Vestergaard, Daniel Haslinger, and Andrea Pasquale. Conpot,
2013. Retrieved 27 August 2016 from http:// conpot.org/ .

48. Digital Bond. SCADA honeynet, 2006. Retrieved 27 August 2016 from http:
// www.digitalbond.com/ tools/ scada-honeynet/ .

49. Daniel Buza, Ferenc Juhasz, Gyorgy Miru, Mark Felegyhazi, and Tamas Hol-
czer. CryPLH: Protecting smart energy systems from targeted attacks with a
PLC honeypot. In Proceedings of Smart Grid Security, pages 181–192, Febru-
ary 2014. Retrieved 23 June 2016 from http:// crysys.hu/ publications/ files/
BuzaJMFH2014smartgridsec.pdf .

50. Robert M. Jaromin. Emulation of industrial control field device protocols.
Master’s thesis, Air Force Institute of Technology, Wright-Patterson AFB OH,
USA, March 2013. Retrieved 24 August 2016 from http:// www.dtic.mil/ cgi-
bin/ GetTRDoc?AD=ADA582482 .

51. Python Software Foundation. Python object serialization, 2016. Retrieved 29
August 2016 from https:// docs.python.org/ 2/ library/ pickle.html .

52. Marshall Beddoe. The protocol informatics project, 2004. Retrieved 7 October,
2016 from http:// www.4tphi.net/ ∼awalters/ PI/ PI.html .

53. W John Ratcliff and E David Metzener. Pattern matching: The gestalt approach,
1988. Retrieved 31 August 2016 from http:// collaboration.cmc.ec.gc.ca/ science/
rpn/ biblio/ ddj/ Website/ articles/ DDJ/ 1988/ 8807/ 8807c/ 8807c.htm.

54. Datasoft. Open source nova version, 2015. Retrieved 29 August 2016 from https:
// github.com/ DataSoft/ Nova.

55. Joseph Daoud. Multi-plc exercise environments for training ics first responders.
Master’s thesis, Air Force Institute of Technology, Wright-Patterson AFB OH,
USA, March 2017.

56. Browser Capabilities Project. browscap.csv, 2016. Retrieved 29 August 2016
from http:// browscap.org/ .

57. Raimund Hocke. SikuliX powered by RaiMan, 2016. Retrieved 9 March 2016
from http:// www.sikulix.com.

87

http://www.thinkmind.org/download.php?articleid=sec_v6_n12_2013_3
http://www.thinkmind.org/download.php?articleid=sec_v6_n12_2013_3
http://conpot.org/
http://www.digitalbond.com/tools/scada-honeynet/
http://www.digitalbond.com/tools/scada-honeynet/
http://crysys.hu/publications/files/BuzaJMFH2014smartgridsec.pdf
http://crysys.hu/publications/files/BuzaJMFH2014smartgridsec.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA582482
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA582482
https://docs.python.org/2/library/pickle.html
http://www.4tphi.net/~awalters/PI/PI.html
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/1988/8807/8807c/8807c.htm
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/1988/8807/8807c/8807c.htm
https://github.com/DataSoft/Nova
https://github.com/DataSoft/Nova
http://browscap.org/
http://www.sikulix.com


58. Kyle Girtz, Mason Rice, Juan Lopez, and Barry Mullins. Practical application
layer emulation in industrial control system honeypots. Critical Infrastructre
Protection X, 2:83–98, March 2016.

88



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

23–03–2017 Master’s Thesis Sept 2015 — Mar 2017

Integration of the Network and Application Layers of Automatically
Configured Programmable Logic Controller Honeypots

17G310

Justin K. Gallenstein, 2d Lt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-17-M-029

Department of Homeland Security ICS-CERT POC: Neil Hershfield, DHS
ICS-CERT Technical Lead ATTN: NPPD/CS&C/NCSD/US-CERT Mailstop:
0635, 245 Murray Lane, SW, Bldg 410, Washington, DC 20528 Email:
ics-cert@dhs.gov phone: 1-877-776-7585

DHS ICS CERT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

This research further develops ScriptGenE, a protocol-agnostic framework capable of accurately creating PLC honeypots.
ScriptGenE uses previously captured PLC traffic to create a tree of the protocol and selectively respond to application
layer requests in an accurate way. This research integrates ScriptGenE with Honeyd to provide the PLC honeypots with
an accurate network layer. This combination provides a comprehensive PLC honeypot.
Testing is done by using the combined framework to emulate a network of Allen-Bradley ControlLogix, Allen-Bradley
CompactLogix, and Siemens S7-300 PLCs. A series of tools are used to evaluate the legitimacy of the emulated PLC
network including Nmap, Honeyscore, RSLinx, STEP7, and Wget. Nmap and Honeyscore are used to show that the
combined framework is able to accurately emulate the network layer of three different PLC types with 100 percent
accuracy. Using Wget, RSLinx, and STEP7 this research shows the ability to emulate more advanced application layer
protocols such as ENIP, ISOTASP, and HTTP with accuracies of 78, 100, and 67 percent respectively.

SCADA, honeypot, programmable logic controller, industrial control systems, automation, emulator, protocol reverse
engineering

U U U U 104

Dr. Barry E. Mullins (ENG)

(937) 255-3636 x7979 Barry.Mullins@afit.edu


	Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Background
	Motivation
	Research Goals and Hypothesis
	Approach
	ScriptGenE Enhancements
	Honeyd Integration
	Experimentation

	Assumptions and Limitations
	Network Protocols Involved
	Limited Set of Tasks
	Limited Set of Scanning Tools
	Limited Configuration Setup
	Resource Management

	Thesis Overview

	Background and Related Research
	Overview
	Background
	Industrial Control Systems
	ICS Vulnerabilities
	Protocol Stack
	Honeypots
	Evaluation Tools

	Related Research
	Honeyd
	Automatic Protocol Emulation
	Advanced Replay Honeypots
	ICS Honeypots

	Chapter Summary

	Framework Integration
	Overview
	Motivation and Application
	The ScriptGenE Framework
	Framework Overview
	ScriptGenE.py
	ScriptGenEemulate.py

	ScriptGenE Framework Changes
	UDP Support
	Improved Backtracking Algorithm
	Automatic Creation of Honeyd Profile
	ScriptGenEemulate.py Alterations
	Honeyd Integration

	Design Summary

	Research Methodology
	Goals
	Approach
	System Boundaries
	Parameters and Factors
	Workload Parameters
	System Parameters

	Performance Metrics
	Experimental Setup
	Overview
	Machine Configurations
	Experimental Scripts
	GUI Automation

	Methodology Summary

	Results and Analysis
	Overview
	Metric 1 - Nmap 
	Metric 2 - Honeyscore
	Metric 3 - PLC Module Discovery
	RSLinx Tasks
	STEP7 Tasks

	Metric 4 - Best-Fit Algorithm

	Conclusions
	Introduction
	Research Conclusions
	Integrated Emulation Performance
	Best-Fit Algorithm

	Significance of Research
	Contributions
	Applications

	Future Work
	Testing
	Enhancing ScriptGenEemulate.py Algorithms
	Honeyd Connection Overload
	Manual P-tree Editing

	Chapter Summary

	Bibliography

